skip to main content


Search for: All records

Creators/Authors contains: "Fiorenza, Evan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Earth is rapidly losing free-living species. Is the same true for parasitic species? To reveal temporal trends in biodiversity, historical data are needed, but often such data do not exist for parasites. Here, parasite communities of the past were reconstructed by identifying parasites in fluid-preserved specimens held in natural history collections. Approximately 2500 macroparasites were counted from 109 English Sole ( Parophrys vetulus ) collected between 1930 and 2019 in the Salish Sea, Washington, USA. Alpha and beta diversity were measured to determine if and how diversity changed over time. Species richness of parasite infracommunities and community dispersion did not vary over time, but community composition of decadal component communities varied significantly over the study period. Community dissimilarity also varied: prior to the mid-20th century, parasites shifted in abundance in a seemingly stochastic manner and, after this time period, a canalization of community change was observed, where species' abundances began to shift in consistent directions. Further work is needed to elucidate potential drivers of these changes and to determine if these patterns are present in the parasite communities of other fishes of the Salish Sea. 
    more » « less
  2. Abstract

    Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid‐preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid‐preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid‐preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host–parasite pairs, we found few differences between treatments, with 24 of 27 host–parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid‐preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long‐term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long‐term datasets on parasite diversity and abundance over the past century or more using fluid‐preserved specimens from natural history collections.

     
    more » « less
  3. Abstract

    The Anthropocene has brought substantial change to ocean ecosystems, but whether this age will bring more or less marine disease is unknown. In recent years, the accelerating tempo of epizootic and zoonotic disease events has made it seem as if disease is on the rise. Is this apparent increase in disease due to increased observation and sampling effort, or to an actual rise in the abundance of parasites and pathogens? We examined the literature to track long‐term change in the abundance of two parasitic nematode genera with zoonotic potential:Anisakisspp. andPseudoterranovaspp. These anisakid nematodes cause the disease anisakidosis and are transmitted to humans in undercooked and raw marine seafood. A total of 123 papers published between 1967 and 2017 met our criteria for inclusion, from which we extracted 755 host–parasite–location–year combinations. Of these, 69.7% concernedAnisakisspp. and 30.3% focused onPseudoterranovaspp. Meta‐regression revealed an increase inAnisakisspp. abundance (average number of worms/fish) over a 53 year period from 1962 to 2015 and no significant change inPseudoterranovaspp. abundance over a 37 year period from 1978 to 2015. Standardizing changes to the period of 1978–2015, so that results are comparable between genera, we detected a significant 283‐fold increase inAnisakisspp. abundance and no change in the abundance ofPseudoterranovaspp. This increase inAnisakisspp. abundance may have implications for human health, marine mammal health, and fisheries profitability.

     
    more » « less